Fast and stable algorithms for discrete spherical Fourier transforms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast and stable algorithms for discrete spherical Fourier transforms

In this paper, we propose an algorithm for the stable and eecient computation of Fourier expansions of square integrable functions on the unit sphere S R 3 , as well as for the evaluation of these Fourier expansions at special knots. The heart of the algorithm is an eecient realization of discrete Legendre function transforms based on a modiied and stabilized version of the Driscoll{Healy algor...

متن کامل

New fast algorithms of multidimensional Fourier and Radon discrete transforms

This paper describes a fast new n{D Discrete Radon Transform (DRT) and a fast exact inversion algorithm for it, without interpolating from polar to Cartesian coordinates or using the backprojection operator. New approach is based on the fast Nussbaumer's Polynomial Transform (NPT).

متن کامل

Fast algorithms for fractional Fourier transforms

The fractional Fourier transform (FRFT) is a one-parametric generalization of the classical Fourier transform. The FRFT was introduced in the 80th and has found a lot of applications and is now used widely in signal processing. Both the space and the spatial frequency domains, respectively, are special cases of the fractional Fourier domains. They correspond to the 0th and 1st fractional Fourie...

متن کامل

Fast Algorithms for the Hypercomplex Fourier Transforms

In multi-dimensional signal processing the Cliiord Fourier transform (CFT or in the 2-D case: quater-nionic Fourier transform/QFT) is a consequent extension of the complex valued Fourier transform. Hence, we need a fast algorithm in order to compute the transform in practical applications. Since the CFT is based on a corresponding Cliiord algebra (CA) and CAs are not commutative in general, we ...

متن کامل

A Polynomial Approach to Fast Algorithms for Discrete Fourier-cosine and Fourier-sine Transforms

The discrete Fourier-cosine transform (cos-DFT), the discrete Fourier-sine transform (sin-DFT) and the discrete cosine transform (DCT) are closely related to the discrete Fourier transform (DFT) of real-valued sequences. This paper describes a general method for constructing fast algorithms for the cos-DFT, the sin-DFT and the DCT, which is based on polynomial arithmetic with Chebyshev polynomi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1998

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(97)10013-1